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ABSTRACT
Traffic congestion problems provide a unique environment
to study how multi-agent systems promote desired system
level behavior. What is particularly interesting in this class
of problems is that no individual action is intrinsically “bad”
for the system but that combinations of actions among agents
lead to undesirable outcomes. As a consequence, agents need
to learn how to coordinate their actions with those of other
agents, rather than learn a particular set of “good” actions.
This problem is ubiquitous in various traffic problems, in-
cluding selecting departure times for commuters, routes for
airlines, and paths for data routers.

In this paper we present a multi-agent approach to two
traffic problems, where for each driver, an agent selects
the most suitable action using reinforcement learning. The
agent rewards are based on concepts from collectives and
aim to provide the agents with rewards that are both easy
to learn and that if learned, lead to good system level be-
havior. In the first problem, we study how agents learn the
best departure times of drivers in a daily commuting envi-
ronment and how following those departure times alleviates
congestion. In the second problem, we study how agents
learn to select desirable routes to improve traffic flow and
minimize delays for all drivers. In both sets of experiments,
agents using collective-based rewards produced near optimal
performance (93-96% of optimal) whereas agents using sys-
tem rewards (63-68%) barely outperformed random action
selection (62-64%) and agents using local rewards (48-72%)
performed worse than random in some instances.

1. INTRODUCTION
Multi-agent learning algorithms provide a natural approach

to addressing congestion problems in traffic and transporta-
tion domains. Congestion problems are characterized by
having the system performance depend on the number of
agents that select a particular action, rather on the intrin-
sic value of those actions. Examples of such problems in-
clude lane/route selection in traffic flow [7, 10], path selec-
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tion in data routing [8], and side selection in the minority
game [3, 6]. In those problems, the desirability of lanes,
paths or sides depends solely on the number of agents hav-
ing selected them. Hence, multi-agent approaches that focus
on agent coordination are ideally suited for these domains
where agent coordination is critical for achieving desirable
system behavior.

In this paper we apply multi-agent learning algorithms to
two separate traffic problems. First we investigate how to
coordinate the departure times of a set of drivers so that they
do not end up producing traffic “spikes” at certain times,
both providing delays at those times and causing congestion
for future departures. In this problem, different time slots
have different desirabilities that reflect user preferences for
particular time slots. The system objective is to maximize
the overall system’s satisfaction as a weighted average of
those desirabilities. In the second problem we investigate
route selection where a set of drivers need to select different
routes to a destination. In this problem, different routes
have different capacities and the problem is for the agents
to minimize the total congestion. Both problems share the
same underlying property that agents greedily pursuing the
best interests of their own drivers cause traffic to worsen for
everyone in the system, including themselves.

The approach we present to alleviating congestion in traf-
fic is based on assigning each driver an agent which deter-
mines the departure time/route to follow. Those agents
determine their actions based on a reinforcement learning
algorithm [9, 14, 18]. The key issue in this approach is to
ensure that the agents receive rewards that promote good
system level behavior. To that end, it is imperative that
the agent rewards: (i) are aligned with the system reward1,
ensuring that when agents aim to maximize their own re-
ward they also aim to maximize system reward; and (ii) are
sensitive to the actions of the agents, so that the agents can
determine the proper actions to select (i.e., they need to
limit the impact of other agents in the reward functions of
a particular agent).

The difficulty in agent reward selection stems from the
fact that typically these two properties provide conflicting
requirements. A reward that is aligned with the system re-
ward usually accounts for the actions of other agents, and
thus is likely to not be sensitive to the actions of one agent;
on the other hand, a reward that is sensitive to the actions
of one agent is likely not to be aligned with system reward.

1We call the function rating the performance of the full sys-
tem, “system reward” throughout this paper in order to em-
phasize its relationship to agent rewards.



This issue is central to achieving coordination in a traffic
congestion problem and has been investigated in various
fields such as computational economics, mechanism design,
computational ecologies and game theory [2, 12, 5, 11, 13].
We address this reward design problem using the difference
reward derived from collectives [19, 16], which provides a
good balance of alignedness and sensitivity. The difference
reward has been applied to many domains, including rover
coordination [1], faulty device selection problem [15], packet
routing over a data network [17, 20], and modeling nonge-
nomic models of early life [?].

In this paper we show how these collective based rein-
forcement learning methods can be used to alleviate traffic
congestion. In Section 2 we discuss the properties agent
rewards need to have and present a particular example of
agent reward. In Sections 3.1 and 3.2 we present the de-
parture coordination problem. The results in this domain
show that total traffic delays can be improved significantly
when agents use collective based rewards. In Section 3.3
we present the route selection problem. The results in this
domain show that traffic congestion can be reduced by over
30% when agents use collective based rewards. Finally Sec-
tion 4 we discuss the implication of these results and discuss
methods by which they can be applied in the traffic domain.

2. BACKGROUND
In this work, we focus on multi-agent systems where each

agent, i, tries to maximize its reward function gi(z), where
z depends on the joint move of all agents. Furthermore,
there is a system reward function, G(z) which rates the
performance of the full system. To distinguish states that
are impacted by actions of agent i, we decompose2 z into
z = zi + z−i, where zi refers to the parts of z that are de-
pendent on the actions of i, and z−i refers to the components
of z that do not depend on the actions of agent i.

2.1 Properties of Reward Functions
Now, let us formalize the two requirements discussed above

that an agent’s reward should satisfy in order for the system
to display coordinated behavior . First, the agent rewards
have to be aligned with respect to G, quantifying the con-
cept that an action taken by an agent that improves its own
reward also improves the system reward. Formally, for sys-
tems with discrete states, the degree of factoredness for a
given reward function gi is defined as:

Fgi =

P
z

P
z′ u[(gi(z)− gi(z

′)) (G(z)−G(z′))]P
z

P
z′ 1

(1)

for all z′ such that z−i = z′−i and where u[x] is the unit step
function, equal to 1 if x > 0, and zero otherwise. Intuitively,
the higher the degree of factoredness between two rewards,
the more likely it is that a change of state will have the same
impact on the two rewards. A system is fully factored when
Fgi = 1.

Second, an agent’s reward has to be sensitive to its own
actions and insensitive to actions of others. Formally we can

2Instead of concatenating partial states to obtain the full
state vector, we use zero-padding for the missing elements
in the partial state vector. This allows us to use addition and
subtraction operators when merging components of different
states (e.g., z = zi + z−i).

quantify the learnability of reward gi, for agent i at z:

λi,gi(z) =
Ez′i

[|gi(z)− gi(z−i + z′i)|]
Ez′−i

[|gi(z)− gi(z′−i + zi)|]
(2)

where E[·] is the expectation operator, z′i’s are alternative
actions of agent i at z, and z′−i’s are alternative joint actions
of all agents other than i. Intuitively, learnability provides
the ratio of the expected value of gi over variations in agent
i’s actions to the expected value of gi over variations in the
actions of agents other than i. So at a given state z, the
higher the learnability, the more gi(z) depends on the move
of agent i, i.e., the better the associated signal-to-noise ratio
for i. Higher learnability means it is easier for i to achieve
large values of its reward.

2.2 Difference Reward Functions
Let us now focus on providing agent rewards that are both

high factoredness and high learnability. Consider the dif-
ference reward [19], which is of the form:

Di ≡ G(z)−G(z−i + ci) (3)

where z−i contains all the states on which agent i has no
effect, and ci is a fixed vector. In other words, all the com-
ponents of z that are affected by agent i are replaced with
the fixed vector ci. Such difference reward functions are fully
factored no matter what the choice of ci, because the sec-
ond term does not depend on i’s states [19]. Furthermore,
they usually have far better learnability than does a sys-
tem reward function, because the second term of D removes
some of the effect of other agents (i.e., noise) from i’s reward
function. In many situations it is possible to use a ci that
is equivalent to taking agent i out of the system. Intuitively
this causes the second term of the difference reward function
to evaluate the value of the system without i and therefore
D evaluates the agent’s contribution to the system reward.

The difference reward can be applied to any linear or non-
linear system reward function. However, its effectiveness is
dependent on the domain and the interaction among the
agent reward functions. At best, it fully cancels the effect
of all other agents. At worst, it reduces to the system re-
ward function, unable to remove any terms (e.g., when z−i

is empty, meaning that agent i effects all states). In most
real world applications, it falls somewhere in between, and
has been successfully used in many domains including agent
coordination, satellite control, data routing, job scheduling
and congestion games [1, 17, 19]. Also note that compu-
tationally the difference reward is often easier to compute
than the system reward function [17]. Indeed in the problem
presented in this paper, for agent i, Di is easier to compute
than G is (see details in Section 3.1.1).

2.3 Reward Maximization
In this paper we assume that each agent maximize its own

reward using its own reinforcement learner (though alterna-
tives such as evolving neuro-controllers are also effective [1].
For complex delayed-reward problems, relatively sophisti-
cated reinforcement learning systems such as temporal dif-
ference may have to be used. However, the traffic domain
modeled in this paper only needs to utilize immediate re-
wards, therefore a simple table-based immediate reward re-
inforcement learning is used. Our reinforcement learner is
equivalent to an ε-greedy Q-learner with a discount rate of



0. At every episode an agent takes an action and then re-
ceives a reward evaluating that action. After taking action a
and receiving reward R a driver updates its table as follows:
Q′(a) = (1−α)Q(a)+α(R), where α is the learning rate. At
every time step the driver chooses the action with the high-
est table value with probability 1− ε and chooses a random
action with probability ε. In the experiments described in
the following section, α is equal to 0.5 and ε is equal to 0.05.
The parameters were chosen experimentally, though system
performance was not overly sensitive to these parameters.

3. EXPERIMENTS
To test the effectiveness of our rewards in the traffic con-

gestion domain, we performed experiments using two ab-
stract traffic models. In the first model each agent has to
select a time slot to start its drive. In this model we explore
both simple and cascading traffic flow. With non-cascading
flow, drivers enter and exit the same time slot, while with
cascading flow, drivers stuck in a time slot with too many
other drivers stay on the road for future time slots. In the
second model, instead of choosing time slots, drivers choose
routes. In this model the system reward has different prop-
erties and we have the additional complexity of different
routes having different capacities.

3.1 Single-Route Congestion Model
In the traffic congestion model used here, there is a fixed

set of drivers, driving on a single route. The agents choose
the time slot in which their drivers start their commutes.
The system reward is given by:

G =
X

t

wtS(kt) . (4)

where weights wt model rush-hour scenarios where different
time slots have different desirabilities, and S(k) is a “time
slot reward”, depending on the number of agents that chose
to depart in the time slot:

S(k) =


ke−1 if k ≤ c

ke−k/c otherwise
, (5)

The number of drivers in the time slot is given by k, and
the optimal capacity of the time slot is given by c. Below
an optimal capacity value c, the reward of the time slot
increases linearly with the number of drivers. When the
number of drivers is above the optimal capacity level, the
value of the time slot decreases quickly (asymptotically ex-
ponential) with the number of drivers. This reward models
how drivers do not particularly care how much traffic is on a
road until it is congested. This function is shown in Figure
1. In this problem the task of the system designer is to have
the agents choose time slots that help maximize the system
reward. To that end, agents have to balance the benefit of
going at preferred time slots with the congestion at those
time slots.

3.1.1 Driver Rewards
While as a system designer our goal is to maximize the sys-

tem reward, we have each individual agent try to maximize
a driver-specific reward that we select. The agents maxi-
mize their rewards through reinforcement learning, where
they learn to choose time slots that have expected high re-
ward. In these experiments, we evaluate the effectiveness
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Figure 1: Reward of time slot with c = 30.

of three different rewards. The first reward is simply the
system reward G, where each agent tries to maximize the
system reward directly. The second reward is a local reward,
Li where each agent tries to maximize a reward based on the
time slot it selected:

Li(k) = wiS(ki) , (6)

where ki is the number of drivers in the time slot chosen by
driver i. The final reward is the difference reward, D:

Di = G(k)−G(k−i)

=
X

j

Lj(k)−
X

j

Lj(k−i)

= Li(k)− Li(k−i)

= wikiS(ki)− wi(ki − 1)S(ki − 1) ,

where k−i represents the the driver counts when driver i is
taken out of the system. Note that since taking away driver
i only affects one time slot, all of the terms but one cancel
out, making the difference reward simpler to compute than
the system reward.

3.1.2 Results
In this set of experiments there were 1000 drivers, and the

optimal capacity of each time slot was 250. Furthermore, the
weighting vector was centered at the most desirable time slot
(e.g., 5 PM departures):

w = [1 5 10 15 20 15 10 5 1]T .

This weighting vector reflects a preference for starting a
commute at the end of the workday with the desirability
of a time slot decreasing for earlier and later times.

This experiment shows that drivers using the difference
reward are able to quickly obtain near-optimal system per-
formance (see Figure 2). In contrast, drivers that try to
directly maximize the system reward learn very slowly and
never achieve good performance during the time-frame of the
experiment. This slow learning rate is a result of the system
reward having low learnability to the agents’ actions. Even
if a driver were to take a system wide coordinated action, it
is likely that some of the 999 other drivers would take unco-
ordinated actions at the same time, lowering the value of the



system reward. A driver using the system reward typically
does not get proper credit assignment for its actions, since
the reward is dominated by other drivers.
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Figure 2: Performance on Single-Route Domain.
Drivers using difference reward quickly learn to
achieve near optimal performance (1.0). Drivers us-
ing system reward learn slowly. Drivers using non-
factored local reward eventually learn counterpro-
ductive actions.
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Figure 3: Distribution of Drivers using Local Re-
ward. Early in training drivers learn good policies.
Later in learning, the maximization of local reward
causes drivers to over utilize high valued time slots.

The experiment where drivers are using L (a non-factored
local reward) exhibit some interesting performance proper-
ties. At first these drivers learn to improve the system re-
ward. However, after about episode seventy their perfor-
mance starts to decline. Figure 3 gives greater insight into
this phenomenon. At the beginning of the experiment, the
drivers are randomly distributed among time slots, resulting
in a low reward. Later in training agents begin to learn to
use the time slots that have the most benefit. When the
number of drivers reach near optimal values for those time

slots, the system reward is high. However, all agents in the
system covet those time slots and more agents start to select
the desirable time slots. This causes congestion and system
reward starts to decline. This performance characteristics
is typical of system with agent rewards of low factoredness.
In such a case, agents attempting to maximize their own
rewards lead to undesirable system behavior. In contrast,
because their rewards are factored with the system reward,
agents using the difference reward form a distribution that
more closely matches the optimal distribution (Figure 4).
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Figure 4: Distribution of Drivers at end of Train-
ing. Drivers using difference reward form distribu-
tion that is closer to optimal than drivers using sys-
tem of local rewards.

3.2 Cascading Single-Route Congestion Model
The previous single-route model assumes that drivers en-

ter and leave the same time slot. Here we introduce a more
complex model, where drivers remain in the system longer
when it is congested. This property modeled by having
drivers over the optimal capacity, c stay in the system until
they reach a time slot with a traffic level below c. When the
number of drivers in a time slot is less than c the reward
for a time slot is the same as before. When the number of
drivers is above c the linear term k is replaced with c:

S(k) =


ke−1 if k ≤ c

ce−k/c otherwise
(7)

As before the system reward is a sum of the time slot re-
wards: G =

P
t S(kt).

3.2.1 Driver Rewards
Again the local reward is the weighted time slot reward:

Li = wiS(ki) , (8)

where ki is the number of drivers in the time slot chosen by
driver i. However the difference reward is more difficult to
simplify as the actions of a driver can have influence over
several time slots:

Di = G(k)−G(k−i)

=
X

j

wjS(kj)−
X

j

wjS(k−ij ) ,



where k−ij is the number of drivers there would have been
in time slot j had driver i not been in the system.

3.2.2 Results
Figure 5 shows the results for cascading traffic model. As

previously, there are 1000 drivers and time slot capacities
are 250. Drivers using the different rewards exhibit simi-
lar characteristics on this model than on the non-cascading
one. Again drivers using the system reward are unable to
improve their performance significantly beyond their initial
random performance. In this model drivers using the local
reward perform even worse once they become proficient at
maximizing their own reward. The local reward here per-
forms worse, because in this model a driver’s choice of time
slot can cause additional side-effects for other time slots, as
drivers from a congested time slot remain in the system for
future time slots. As a result, when drivers using the local
reward cause congestion for their time slots, the congestion
cascades as drivers spill into future time slots causing a sig-
nificant decrease in performance.
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Figure 5: Performance on Cascading Single-Route
Domain. In this domain drivers above the capacity
in one time slot remain in system in future time
slots. Drivers using difference reward quickly learn
to achieve near optimal performance (1.0).

3.3 Multiple-Route Congestion Model
In this model instead of selecting time slots, drivers select

routes. The main difference in this model is the functional
form of the reward for a route as shown in Figure 6. In
this model the objective is to keep the routes uncongested.
The system reward does not care how many drivers are on a
particular route as long as that route is below its congestion
point. Each route has a different weight representing overall
driver preference for a route. Furthermore, each route has
its own capacity, modeling the realities that some routes
having more lanes than others.

In this model the reward for an individual route is:

S(k, c) =


e−1 if k ≤ c

e−k/c otherwise
(9)

The system reward is then the sum of all route rewards
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Figure 6: Reward of Road with c = 30.

weighted by the value of the route.

G =
X

i

wiS(ki, ci) , (10)

where wi is the weighting for route i and ci is the capacity
for route i.

3.3.1 Driver Rewards
Again three rewards were tested: the system reward, the

local reward and the difference reward. The local reward is
the weighted reward for a single route:

Li = wiS(ki, ci) . (11)

The final reward is the difference reward, D:

Di = G(k)−G(k−i)

= Li(k)− Li(k−i)

= wiS(ki, ci)− wiS(ki − 1, ci) ,

representing the difference between the actual system re-
ward and what the system reward would have been if the
driver had not been in the system.

3.3.2 Results
Here we show the results of experiments where we test

performance of the three rewards in the multi-route model,
where different routes have different value weightings and
different capacities. There were 1000 drivers in these exper-
iments and the route capacities were 333, 167, 83, 33, 17,
33, 83, 167, 333. Each route is weighted with the weights 1,
5, 10, 1, 5, 10, 1, 5, 10. Figure 7 shows that drivers using
the system reward perform poorly, and learn slowly. Again
drivers using the difference reward perform the best, learn-
ing quickly to achieve an almost optimal solution. Drivers
using the local reward learn more quickly early in training
than drivers using the system reward, but never achieve as
high as performance as those using the difference reward.
However in this domain the drivers using the local reward
do not degrade from their maximal performance, but instead
enter a steady state that is significantly below that of the
drivers using the difference reward.
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4. DISCUSSION
This paper presented a method for improving congestion

in two different traffic problems. First we presented a method
by which agents can coordinate the departure times of drivers
in order to alleviate spiking at peak traffic times. Second we
showed that agents can manage effective route selection and
significantly reduce congestion by using a reward structure
that penalizes greedily pursuing the routes with high ca-
pacity. Both results are based on agents receiving rewards
that have high factoredness and high learnability (i.e., are
both aligned with the system reward and are as sensitive
as possible to changes in the reward of each agent). In
both sets of experiments, agents using collective-based re-
wards produced near optimal performance (93-96% of opti-
mal) whereas agents using system rewards (63-68%) barely
outperformed random action selection (62-64%) and agents
using local rewards (48-72%) provided performance ranging
from mediocre to worse than random in some instances.

One issue that arises in traffic problems that does not arise
in many other domains (e.g., rover coordination) is in en-
suring that drivers follow the advice of their agents. In this
work, we did not address this issue, as our purpose was to
show that solutions to the difficult traffic congestion prob-
lem can be addressed in a distributed adaptive manner using
intelligent agents. Ensuring that drivers follow the advice of
their agents is a fundamentally different problem. On one
hand, drivers will notice that the departure times/routes
suggested by their agents provide significant improvement
over their regular patterns. However, as formulated, there
are no mechanisms for ensuring that a driver does not gain
an advantage by ignoring the advice of his or her agent.
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